Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth.
نویسندگان
چکیده
Pollen tubes grown in vitro require an intracellular tip-high gradient of Ca2+ in order to elongate. Moreover, after about 2 h in vitro both the tip Ca2+ and the elongation rate of lily tubes begin to oscillate regularly with large amplitudes. This raises the question of the phase relation between these two oscillations. Previous studies lacked the temporal resolution to accurately establish this relationship. We have studied these oscillations with a newly developed, high temporal resolution system and the complementary use of both luminescent and fluorescent calcium reporters. We hereby show that the periodic increases in elongation rate during oscillatory growth of Lilium longiflorum pollen tubes clearly precede those in subtip calcium and do so by 4.1 +/- 0.2 s out of average periods of 38.7 +/- 1.8 s. Also, by collecting images of the light output of aequorin, we find that the magnitude of the [Ca2+] at the tip oscillates between 3 and 10 microM, which is considerably greater than that reported by fluorescent indicators. We propose an explanatory model that features cyclic growth and secretion in which growth oscillations give rise to secretion that is essential for the subsequent growth oscillation. We also critically compile data on L. longiflorum stylar growth rates, which show little variation from in vitro rates of pollen tubes grown in optimal medium.
منابع مشابه
Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms.
Pollen tubes are an established model system for examining polarized cell growth. The focus here is on pollen tubes of the conifer Norway spruce (Picea abies, Pinaceae); examining the relationship between cytosolic free Ca2+, tip elongation, and intracellular motility. Conifer pollen tubes show important differences from their angiosperm counterparts; they grow more slowly and their organelles ...
متن کاملIntersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide
Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary m...
متن کاملRelocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation
Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisi...
متن کاملIdentification and characterization of stretch-activated ion channels in pollen protoplasts.
Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have nev...
متن کاملIons and Pollen Tube Growth
Ions play a crucial role in the control of pollen tube growth. In this review we focus on four that seem especially important: calcium (Ca2+), protons (H+), potassium (K+), and chloride (Cl–). Ca2+ in the extracellular medium is essential for growth; it forms a steep intracellular tip-focused gradient, and exhibits a prominent extracellular tip-directed Ca2+ influx. pH is also essential for gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 222 1 شماره
صفحات -
تاریخ انتشار 2000